Ebastine/Phenylephrine Actions

Is this medication very expensive?
sponsored

Consists of Ebastine, Phenylephrine

Actions of Ebastine in details

The action of the drug on the human body is called Pharmacodynamics in Medical terminology. To produce its effect and to change the pathological process that is happening the body and to reduce the symptom or cure the disease, the medicine has to function in a specific way. The changes it does to the body at cellular level gives the desired result of treating a disease. Drugs act by stimulating or inhibiting a receptor or an enzyme or a protein most of the times. Medications are produced in such a way that the ingredients target the specific site and bring about chemical changes in the body that can stop or reverse the chemical reaction which is causing the disease.
sponsored

Description: Ebastine, a piperidine derivative, is a long-acting, nonsedating, second-generation histamine receptor antagonist that binds preferentially to peripheral H1 receptors. It is metabolised to active metabolite, carebastine. It has antihistaminic, antiallergic activity and prevents histamine-induced bronchoconstriction. It does not have significant sedative or antimuscarinic actions.

Ebastine administration

Administration of drug is important to know because the drug absorption and action varies depending on the route and time of administration of the drug. A medicine is prescribed before meals or after meals or along with meals. The specific timing of the drug intake about food is to increase its absorption and thus its efficacy. Few work well when taken in empty stomach and few medications need to be taken 1 or 2 hrs after the meal. A drug can be in the form of a tablet, a capsule which is the oral route of administration and the same can be in IV form which is used in specific cases. Other forms of drug administration can be a suppository in anal route or an inhalation route.

May be taken with or without food.

Actions of Phenylephrine in details

The action of the drug on the human body is called Pharmacodynamics in Medical terminology. To produce its effect and to change the pathological process that is happening the body and to reduce the symptom or cure the disease, the medicine has to function in a specific way. The changes it does to the body at cellular level gives the desired result of treating a disease. Drugs act by stimulating or inhibiting a receptor or an enzyme or a protein most of the times. Medications are produced in such a way that the ingredients target the specific site and bring about chemical changes in the body that can stop or reverse the chemical reaction which is causing the disease.

In general, α1-adrenergic receptors mediate contraction and hypertrophic growth of smooth muscle cells. α1-receptors are 7-transmembrane domain receptors coupled to G proteins, Gq/11. Three α1-receptor subtypes, which share approximately 75% homology in their transmembrane domains, have been identified: α1A (chromosome 8), α1B (chromosome 5), and α1D (chromosome 20). Phenylephrine appears to act similarly on all three receptor subtypes. All three receptor subtypes appear to be involved in maintaining vascular tone. The α1A-receptor maintains basal vascular tone while the α1B-receptor mediates the vasocontrictory effects of exogenous α1-agonists. Activation of the α1-receptor activates Gq-proteins, which results in intracellular stimulation of phospholipases C, A2, and D. This results in mobilization of Ca2+ from intracellular stores, activation of mitogen-activated kinase and PI3 kinase pathways and subsequent vasoconstriction. Phenylephrine produces its local and systemic actions by acting on α1-adrenergic receptors peripheral vascular smooth muscle. Stimulation of the α1-adrenergic receptors results in contraction arteriolar smooth muscle in the periphery. Phenylephrine decreases nasal congestion by acting on α1-adrenergic receptors in the arterioles of the nasal mucosa to produce constriction; this leads to decreased edema and increased drainage of the sinus cavities.

How should I take Phenylephrine?

Do not use if the solution turns brown or becomes cloudy.

To use:

For patients using the 2.5 or 10% eye drops:

Dosing

The dose of phenylephrine will be different for different patients. Follow your doctor's orders or the directions on the label. The following information includes only the average doses of phenylephrine. If your dose is different, do not change it unless your doctor tells you to do so.

The amount of medicine that you take depends on the strength of the medicine. Also, the number of doses you take each day, the time allowed between doses, and the length of time you take the medicine depend on the medical problem for which you are using the medicine.

Missed Dose

If you miss a dose of phenylephrine, take it as soon as possible. However, if it is almost time for your next dose, skip the missed dose and go back to your regular dosing schedule. Do not double doses.

For non-prescription strength eye drops, follow the package directions.

Storage

Store the medicine in a closed container at room temperature, away from heat, moisture, and direct light. Keep from freezing.

Keep out of the reach of children.

Do not keep outdated medicine or medicine no longer needed.

Phenylephrine administration

Administration of drug is important to know because the drug absorption and action varies depending on the route and time of administration of the drug. A medicine is prescribed before meals or after meals or along with meals. The specific timing of the drug intake about food is to increase its absorption and thus its efficacy. Few work well when taken in empty stomach and few medications need to be taken 1 or 2 hrs after the meal. A drug can be in the form of a tablet, a capsule which is the oral route of administration and the same can be in IV form which is used in specific cases. Other forms of drug administration can be a suppository in anal route or an inhalation route.
sponsored

IV:

Hypotension/shock: May be administered via continuous infusion (after diluting). When administering as a continuous infusion, central line administration is preferred. IV infusions require an infusion pump.

Hypotension during anesthesia: Administer as an IV bolus over 20 to 30 seconds.

Vesicant; ensure proper needle or catheter placement prior to and during infusion; avoid extravasation.

Extravasation management: If extravasation occurs, stop infusion immediately and disconnect (leave cannula/needle in place); gently aspirate extravasated solution (do NOT flush the line); remove needle/cannula; elevate extremity. Initiate phentolamine (or alternative antidote). Apply dry warm compresses (Hurst 2004; Reynolds 2014).

Phentolamine: Dilute 5 to 10 mg in 10 to 20 mL NS and administer into extravasation site as soon as possible after extravasation; may readminister if patient remains symptomatic (Reynolds 2014).

Alternative to phentolamine: Nitroglycerin topical 2% ointment (based on limited data): Apply a 1-inch strip to the site of ischemia; may repeat every 8 hours as necessary (Reynolds 2014).

Phenylephrine pharmacology

Pharmacokinetics of a drug can be defined as what body does to the drug after it is taken. The therapeutic result of the medicine depends upon the Pharmacokinetics of the drug. It deals with the time taken for the drug to be absorbed, metabolized, the process and chemical reactions involved in metabolism and about the excretion of the drug. All these factors are essential to deciding on the efficacy of the drug. Based on these pharmacokinetic principles, the ingredients, the Pharmaceutical company decides dose and route of administration. The concentration of the drug at the site of action which is proportional to therapeutic result inside the body depends on various pharmacokinetic reactions that occur in the body.
sponsored

Mechanism Of Action

Phenylephrine hydrochloride is an a-1 adrenergic receptor agonist.

Pharmacodynamics

Interaction of phenylephrine with a1-adrenergic receptors on vascular smooth muscle cells causes activation of the cells and results in vasoconstriction. Following phenylephrine hydrochloride intravenous administration, increases in systolic and diastolic blood pressures, mean arterial blood pressure, and total peripheral vascular resistance are observed. The onset of blood pressure increase following an intravenous bolus phenylephrine hydrochloride administration is rapid, typically within minutes. As blood pressure increases following intravenous administration, vagal activity also increases, resulting in reflex bradycardia.

Phenylephrine has activity on most vascular beds, including renal, pulmonary, and splanchnic arteries.

Pharmacokinetics

Following an intravenous infusion of phenylephrine hydrochloride, the observed effective halflife was approximately 5 minutes. The steady-state volume of distribution of approximately 340 L suggests a high distribution into organs and peripheral tissues. The average total serum clearance is approximately 2100 mL/min. The observed phenylephrine plasma terminal elimination half-life was 2.5 hours.

Phenylephrine is metabolized primarily by monoamine oxidase and sulfotransferase. After intravenous administration of radiolabeled phenylephrine, approximately 80% of the total dose was eliminated within first 12 h; and approximately 86% of the total dose was recovered in the urine within 48 h. The excreted unchanged parent drug was 16% of the total dose in the urine at 48 h post intravenous administration. There are two major metabolites, with approximately 57 and 8% of the total dose excreted as m-hydroxymandelic acid and sulfate conjugates, respectively. The metabolites are considered not pharmacologically active.

Clinical Studies

The evidence for the efficacy of Phenylephrine is derived from studies of phenylephrine hydrochloride in the published literature. The literature support includes 16 studies evaluating the use of intravenous phenylephrine to treat hypotension during anesthesia. The 16 studies include 9 studies where phenylephrine was used in low-risk (ASA 1 and 2) pregnant women undergoing neuraxial anesthesia during Cesarean delivery, 6 studies in non-obstetric surgery under general anesthesia, and 1 study in non-obstetric surgery under combined general and neuraxial anesthesia. Phenylephrine has been shown to raise systolic and mean blood pressure when administered either as a bolus dose or by continuous infusion following the development of hypotension during anesthesia.



References

  1. NCIt. "Phenylephrine: NCI Thesaurus (NCIt) provides reference terminology for many systems. It covers vocabulary for clinical care, translational and basic research, and public information and administrative activities.". https://ncit.nci.nih.gov/ncitbrowser... (accessed September 17, 2018).
  2. EPA DSStox. "Phenylephrine: DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.". https://comptox.epa.gov/dashboard/ds... (accessed September 17, 2018).
  3. EPA DSStox. "Ebastine: DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.". https://comptox.epa.gov/dashboard/ds... (accessed September 17, 2018).

Reviews

The results of a survey conducted on ndrugs.com for Ebastine/Phenylephrine are given in detail below. The results of the survey conducted are based on the impressions and views of the website users and consumers taking Ebastine/Phenylephrine. We implore you to kindly base your medical condition or therapeutic choices on the result or test conducted by a physician or licensed medical practitioners.

User reports

Consumer reported administration

No survey data has been collected yet


Consumer reviews


There are no reviews yet. Be the first to write one!


Your name: 
Email: 
Spam protection:  < Type 2 here

Information checked by Dr. Sachin Kumar, MD Pharmacology

| Privacy Policy
This site does not supply any medicines. It contains prices for information purposes only.
© 2003 - 2022 ndrugs.com All Rights Reserved