Levofloxacin Actions


Actions of Levofloxacin in details

infoThe action of the drug on the human body is called Pharmacodynamics in Medical terminology. To produce its effect and to change the pathological process that is happening the body and to reduce the symptom or cure the disease, the medicine has to function in a specific way. The changes it does to the body at cellular level gives the desired result of treating a disease. Drugs act by stimulating or inhibiting a receptor or an enzyme or a protein most of the times. Medications are produced in such a way that the ingredients target the specific site and bring about chemical changes in the body that can stop or reverse the chemical reaction which is causing the disease.

Pharmacology: Mechanism of Action: The main mechanism of action of levofloxacin is the inhibition of DNA gyrase. It is 2-fold stronger than that of ofloxacin. There is not much difference between the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The activity of levofloxacin is bactericidal. In the observation of bacterial morphology, bacteriolysis can be seen in the concentration around MIC.

Pharmacokinetics: Absorption:

Orally administered levofloxacin is rapidly and almost completely absorbed with peak plasma concentrations being obtained within 1 hr. The absolute bioavailability is approximately 100%. Food has little effect on the absorption of levofloxacin.

Distribution in Plasma: Approximately 30-40% of levofloxacin is bound to serum protein. Multiple dosing with levofloxacin 500 mg once daily showed neglible accumulation. There is modest but predictable accumulation of levofloxacin after doses of 500 mg twice daily. Steady state is achieved within 3 days.

Penetration into Tissues and Body Fluids: Penetration into Bronchial Mucosa, Epithelial Lining Fluid (ELF): Maximum levofloxacin concentrations in bronchial mucosa and ELF were 8.3 mcg/mL and 10.8 mcg/mL, respectively. These were reached approximately 1 hr after administration.

Penetration into Lung Tissue: Maximum levofloxacin concentrations in lung tissues were approximately 11.3 mcg/mL and were reached between 4-6 hrs after administration.

Metabolism: Levofloxacin is metabolised to a very small extent, the metabolites being desmethyl-levofloxacin and levofloxacin N-oxide. These metabolites account for <5% of the dose excretion in urine. Levofloxacin is stereochemically stable and does not undergo chiral inversion.

Elimination: Following oral and IV administration, levofloxacin is eliminated relatively slowly from the plasma (half-life: 6-8 hrs). Excretion is primarily by the renal route (>85% of the administered dose).

Microbiology: Levofloxacin is a broad-spectrum antibacterial agent against gram-positive and gram-negative bacteria including anaerobes. Levofloxacin has shown strong antibacterial activities against Staphylococcus spp, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus hemolyticus, Enterobacter spp, Escherichia coli, Klebsiella spp, Serratia spp, Enterococcus spp, Proteus spp and other glucose nonfermentative gram-negative rods, Pseudomonas aeruginosa, Haemophilus influenzae and Neisseria gonorrhoeae. Morever, levofloxacin has shown antibacterial activity against Chlamydia trachomatis. Levofloxacin has an excellent protective and treatment effects in mice.

How should I take Levofloxacin?

A nurse or other trained health professional will give you levofloxacin. levofloxacin is given through a needle placed in one of your veins. The medicine must be injected slowly, so the needle will need to stay in place for at least 1 hour.

levofloxacin comes with a Medication Guide. It is very important that you read and understand this information. Be sure to ask your doctor about anything you do not understand.

Your doctor will give you a few doses of levofloxacin until your condition improves, and then switch you to an oral medicine that works the same way. If you have any concerns about this, talk to your doctor.

Several additional glasses of water should be taken every day while being treated with levofloxacin, unless otherwise directed by your doctor. Drinking extra water will help to prevent some unwanted effects of levofloxacin.

Levofloxacin administration

infoAdministration of drug is important to know because the drug absorption and action varies depending on the route and time of administration of the drug. A medicine is prescribed before meals or after meals or along with meals. The specific timing of the drug intake about food is to increase its absorption and thus its efficacy. Few work well when taken in empty stomach and few medications need to be taken 1 or 2 hrs after the meal. A drug can be in the form of a tablet, a capsule which is the oral route of administration and the same can be in IV form which is used in specific cases. Other forms of drug administration can be a suppository in anal route or an inhalation route.

Oral soln: Should be taken on an empty stomach. Take on an empty stomach 1 hr before or 2 hr after meals. Ensure adequate fluid intake.

Tab: May be taken with or without food. Ensure adequate fluid intake.

Levofloxacin pharmacology

infoPharmacokinetics of a drug can be defined as what body does to the drug after it is taken. The therapeutic result of the medicine depends upon the Pharmacokinetics of the drug. It deals with the time taken for the drug to be absorbed, metabolized, the process and chemical reactions involved in metabolism and about the excretion of the drug. All these factors are essential to deciding on the efficacy of the drug. Based on these pharmacokinetic principles, the ingredients, the Pharmaceutical company decides dose and route of administration. The concentration of the drug at the site of action which is proportional to therapeutic result inside the body depends on various pharmacokinetic reactions that occur in the body.

Mechanism of Action

Levofloxacin is a member of the fluoroquinolone class of antibacterial agents.


The mean ± SD pharmacokinetic parameters of levofloxacin determined under single and steady-state conditions following oral tablet, oral solution, or intravenous (IV) doses of Levofloxacin are summarized in Table 8.

ND = not determined


Levofloxacin is rapidly and essentially completely absorbed after oral administration. Peak plasma concentrations are usually attained one to two hours after oral dosing. The absolute bioavailability of levofloxacin from a 500 mg tablet and a 750 mg tablet of Levofloxacin are both approximately 99%, demonstrating complete oral absorption of levofloxacin. Following a single intravenous dose of Levofloxacin to healthy volunteers, the mean ± SD peak plasma concentration attained was 6.2 ± 1.0 mcg/mL after a 500 mg dose infused over 60 minutes and 11.5 ± 4.0 mcg/mL after a 750 mg dose infused over 90 minutes. Levofloxacin

Oral Solution and Tablet formulations are bioequivalent.

Levofloxacin pharmacokinetics are linear and predictable after single and multiple oral or IV dosing regimens. Steady-state conditions are reached within 48 hours following a 500 mg or 750 mg once-daily dosage regimen. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily oral dosage regimens were approximately 5.7 ± 1.4 and 0.5 ± 0.2 mcg/mL after the 500 mg doses, and 8.6 ± 1.9 and 1.1 ± 0.4 mcg/mL after the 750 mg doses, respectively. The mean ± SD peak and trough plasma concentrations attained following multiple once-daily IV regimens were approximately 6.4 ± 0.8 and 0.6 ± 0.2 mcg/mL after the 500 mg doses, and 12.1 ± 4.1 and 1.3 ± 0.71 mcg/mL after the 750 mg doses, respectively.

Oral administration of a 500 mg dose of Levofloxacin with food prolongs the time to peak concentration by approximately 1 hour and decreases the peak concentration by approximately 14% following tablet and approximately 25% following oral solution administration. Therefore, Levofloxacin Tablets can be administered without regard to food. It is recommended that Levofloxacin

Oral Solution be taken 1 hour before or 2 hours after eating.

The plasma concentration profile of levofloxacin after IV administration is similar and comparable in extent of exposure (AUC) to that observed for Levofloxacin Tablets when equal doses (mg/mg) are administered. Therefore, the oral and IV routes of administration can be considered interchangeable.

Figure 2: Mean Levofloxacin Plasma Concentration vs. Time Profile: 750 mg

Figure 3: Mean Levofloxacin Plasma Concentration vs. Time Profile: 500 mg


The mean volume of distribution of levofloxacin generally ranges from 74 to 112 L after single and multiple 500 mg or 750 mg doses, indicating widespread distribution into body tissues. Levofloxacin reaches its peak levels in skin tissues and in blister fluid of healthy subjects at approximately 3 hours after dosing. The skin tissue biopsy to plasma AUC ratio is approximately 2 and the blister fluid to plasma AUC ratio is approximately 1 following multiple once-daily oral administration of 750 mg and 500 mg doses of Levofloxacin respectively, to healthy subjects. Levofloxacin also penetrates well into lung tissues. Lung tissue concentrations were generally 2- to 5-fold higher than plasma concentrations and ranged from approximately 2.4 to 11.3 mcg/g over a 24-hour period after a single 500 mg oral dose.

In vitro, over a clinically relevant range (1 to 10 mcg/mL) of serum/plasma levofloxacin concentrations, levofloxacin is approximately 24 to 38% bound to serum proteins across all species studied, as determined by the equilibrium dialysis method. Levofloxacin is mainly bound to serum albumin in humans. Levofloxacin binding to serum proteins is independent of the drug concentration.


Levofloxacin is stereochemically stable in plasma and urine and does not invert metabolically to its enantiomer, D-ofloxacin. Levofloxacin undergoes limited metabolism in humans and is primarily excreted as unchanged drug in the urine. Following oral administration, approximately 87% of an administered dose was recovered as unchanged drug in urine within 48 hours, whereas less than 4% of the dose was recovered in feces in 72 hours. Less than 5% of an administered dose was recovered in the urine as the desmethyl and N-oxide metabolites, the only metabolites identified in humans. These metabolites have little relevant pharmacological activity.


Levofloxacin is excreted largely as unchanged drug in the urine. The mean terminal plasma elimination half-life of levofloxacin ranges from approximately 6 to 8 hours following single or multiple doses of levofloxacin given orally or intravenously. The mean apparent total body clearance and renal clearance range from approximately 144 to 226 mL/min and 96 to 142 mL/min, respectively. Renal clearance in excess of the glomerular filtration rate suggests that tubular secretion of levofloxacin occurs in addition to its glomerular filtration. Concomitant administration of either cimetidine or probenecid results in approximately 24% and 35% reduction in the levofloxacin renal clearance, respectively, indicating that secretion of levofloxacin occurs in the renal proximal tubule. No levofloxacin crystals were found in any of the urine samples freshly collected from subjects receiving Levofloxacin.


There are no significant differences in levofloxacin pharmacokinetics between young and elderly subjects when the subjects' differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of Levofloxacin to healthy elderly subjects (66 – 80 years of age), the mean terminal plasma elimination half-life of levofloxacin was about 7.6 hours, as compared to approximately 6 hours in younger adults. The difference was attributable to the variation in renal function status of the subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by age. Levofloxacin dose adjustment based on age alone is not necessary.


The pharmacokinetics of levofloxacin following a single 7 mg/kg intravenous dose were investigated in pediatric patients ranging in age from 6 months to 16 years. Pediatric patients cleared levofloxacin faster than adult patients, resulting in lower plasma exposures than adults for a given mg/kg dose. Subsequent pharmacokinetic analyses predicted that a dosage regimen of 8 mg/kg every 12 hours (not to exceed 250 mg per dose) for pediatric patients 6 months to 17 years of age would achieve comparable steady state plasma exposures (AUC0-24 and Cmax) to those observed in adult patients administered 500 mg of levofloxacin once every 24 hours.


There are no significant differences in levofloxacin pharmacokinetics between male and female subjects when subjects' differences in creatinine clearance are taken into consideration. Following a 500 mg oral dose of Levofloxacin to healthy male subjects, the mean terminal plasma elimination half-life of levofloxacin was about 7.5 hours, as compared to approximately 6.1 hours in female subjects. This difference was attributable to the variation in renal function status of the male and female subjects and was not believed to be clinically significant. Drug absorption appears to be unaffected by the gender of the subjects. Dose adjustment based on gender alone is not necessary.


The effect of race on levofloxacin pharmacokinetics was examined through a covariate analysis performed on data from 72 subjects: 48 white and 24 non-white. The apparent total body clearance and apparent volume of distribution were not affected by the race of the subjects.

Renal Impairment

Clearance of levofloxacin is substantially reduced and plasma elimination half-life is substantially prolonged in adult patients with impaired renal function (creatinine clearance < 50 mL/min), requiring dosage adjustment in such patients to avoid accumulation. Neither hemodialysis nor continuous ambulatory peritoneal dialysis (CAPD) is effective in removal of levofloxacin from the body, indicating that supplemental doses of Levofloxacin are not required following hemodialysis or CAPD.

Hepatic Impairment

Pharmacokinetic studies in hepatically impaired patients have not been conducted. Due to the limited extent of levofloxacin metabolism, the pharmacokinetics of levofloxacin are not expected to be affected by hepatic impairment.

Bacterial Infection

The pharmacokinetics of levofloxacin in patients with serious community-acquired bacterial infections are comparable to those observed in healthy subjects.

Drug-Drug Interactions

The potential for pharmacokinetic drug interactions between Levofloxacin and antacids warfarin, theophylline, cyclosporine, digoxin, probenecid, and cimetidine has been evaluated.


Mechanism of Action

Levofloxacin is the L-isomer of the racemate, ofloxacin, a quinolone antimicrobial agent. The antibacterial activity of ofloxacin resides primarily in the L-isomer. The mechanism of action of levofloxacin and other fluoroquinolone antimicrobials involves inhibition of bacterial topoisomerase IV and DNA gyrase (both of which are type II topoisomerases), enzymes required for DNA replication, transcription, repair and recombination.

Mechanism of Resistance

Fluoroquinolone resistance can arise through mutations in defined regions of DNA gyrase or topoisomerase IV, termed the Quinolone-Resistance Determining Regions (QRDRs), or through altered efflux.

Fluoroquinolones, including levofloxacin, differ in chemical structure and mode of action from aminoglycosides, macrolides and ß-lactam antibiotics, including penicillins. Fluoroquinolones may, therefore, be active against bacteria resistant to these antimicrobials.

Resistance to levofloxacin due to spontaneous mutation in vitro is a rare occurrence (range: 10-9 to 10-10). Cross-resistance has been observed between levofloxacin and some other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to levofloxacin.

Activity in vitro and in vivo

Levofloxacin has in vitro activity against Gram-negative and Gram-positive bacteria.

Levofloxacin has been shown to be active against most isolates of the following bacteria both in vitro and in clinical infections as described in :

Gram-Positive Bacteria

Enterococcus faecalis

Staphylococcus aureus (methicillin-susceptible isolates)

Staphylococcus epidermidis (methicillin-susceptible isolates)

Staphylococcus saprophyticus

Streptococcus pneumoniae (including multi-drug resistant isolates [MDRSP])1

Streptococcus pyogenes


1 MDRSP (Multi-drug resistant Streptococcus pneumoniae) isolates are isolates resistant to two or more of the following antibiotics: penicillin (MIC ≥ 2 mcg/mL), 2nd generation cephalosporins, e.g., cefuroxime; macrolides, tetracyclines and trimethoprim/sulfamethoxazole.

Gram-Negative Bacteria

Enterobacter cloacae

Escherichia coli

Haemophilus influenzae

Haemophilus parainfluenzae

Klebsiella pneumoniae

Legionella pneumophila

Moraxella catarrhalis

Proteus mirabilis

Pseudomonas aeruginosa

Serratia marcescens

Other Bacteria

Chlamydophila pneumoniae

Mycoplasma pneumoniae

The following in vitro data are available, but their clinical significance is unknown: Levofloxacin exhibits in vitro minimum inhibitory concentrations (MIC values) of 2 mcg/mL or less against most (≥ 90%) isolates of the following microorganisms; however, the safety and effectiveness of Levofloxacin in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials.

Gram-Positive Bacteria

Staphylococcus haemolyticus

ß-hemolytic Streptococcus (Group C/F)

ß-hemolytic Streptococcus (Group G)

Streptococcus agalactiae

Streptococcus milleri

Viridans group streptococci

Bacillus anthracis

Gram-Negative Bacteria

Acinetobacter baumannii

Acinetobacter lwoffii

Bordetella pertussis

Citrobacter koseri

Citrobacter freundii

Enterobacter aerogenes

Enterobacter sakazakii

Klebsiella oxytoca

Morganella morganii

Pantoea agglomerans

Proteus vulgaris

Providencia rettgeri

Providencia stuartii

Pseudomonas fluorescens

Yersinia pestis

Anaerobic Gram-Positive Bacteria

Clostridium perfringens

Susceptibility Tests

When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drug products used in the resident hospitals to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.

Dilution techniques:

Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC values should be determined using a standardized procedure. Standardized procedures are based on a dilution method1, 2, 4 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of levofloxacin powder. The MIC values should be interpreted according to the criteria outlined in Table 9.

Diffusion techniques:

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2, 3 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 5 mcg levofloxacin to test the susceptibility of bacteria to levofloxacin.

Reports from the laboratory providing results of the standard single-disk susceptibility test with a 5 mcg levofloxacin disk should be interpreted according to the criteria outlined in Table 9.

A report of Susceptible indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of Intermediate indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where a high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of Resistant indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.

Quality Control:

Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test.1,2,3,4 Standard levofloxacin powder should provide the range of MIC values noted in Table 10. For the diffusion technique using the 5 mcg disk, the criteria in Table 10 should be achieved.



  1. DailyMed. "LEVOFLOXACIN: DailyMed provides trustworthy information about marketed drugs in the United States. DailyMed is the official provider of FDA label information (package inserts).". https://dailymed.nlm.nih.gov/dailyme... (accessed September 17, 2018).
  2. NCIt. "Levofloxacin: NCI Thesaurus (NCIt) provides reference terminology for many systems. It covers vocabulary for clinical care, translational and basic research, and public information and administrative activities.". https://ncit.nci.nih.gov/ncitbrowser... (accessed September 17, 2018).
  3. EPA DSStox. "Levofloxacin: DSSTox provides a high quality public chemistry resource for supporting improved predictive toxicology.". https://comptox.epa.gov/dashboard/ds... (accessed September 17, 2018).


The results of a survey conducted on ndrugs.com for Levofloxacin are given in detail below. The results of the survey conducted are based on the impressions and views of the website users and consumers taking Levofloxacin. We implore you to kindly base your medical condition or therapeutic choices on the result or test conducted by a physician or licensed medical practitioners.

User reports

2 consumers reported administration

When best can I take Levofloxacin, on an empty stomach, before or after food?
ndrugs.com website users have also released a report stating that Levofloxacin should be taken Before food. In any case, this may not be the right description on how you ought to take this Levofloxacin. Kindly visit your doctor for more medical advice in this regard. Click here to see other users view on when best the Levofloxacin can be taken.
Before food1
After food1

Consumer reviews

There are no reviews yet. Be the first to write one!

Your name: 
Spam protection:  < Type 20 here

Information checked by Dr. Sachin Kumar, MD Pharmacology

| Privacy Policy
This site does not supply any medicines. It contains prices for information purposes only.
© 2003 - 2018 ndrugs.com All Rights Reserved